

strata X-Drug General Methods

STEP 1:

Sample Pre-treatments

Opiates	Option 1: Acid Hydrolysis	
Healthcare Opiates	1. To each 2 mL urine sample, add 500 µL of concentrated Hydrochloric acid.	
	2. Heat at 90 °C for 2 hours, then allow to cool for 5 minutes.	
	 For GC analysis only, add 150 μL of 10 % Methoxyamine in water. Vortex and heat for 30 minutes at 60 °C. 	
	4. Add 1 mL of 500 mM Sodium acetate buffer (pH 4.0).	
	5. Add 1 mL of 6 N Potassium hydroxide then vortex.	
	6. Centrifuge for 5 minutes at 5000 rpm, verify that pH is between 4.0 and 6.0.	
	Option 2: Enzymatic Hydrolysis	
	 To each 2 mL urine sample, add 1000 μL of β-glucuronidase solution (contains 5000 F units/mL Patella vulgata in 100 mM Acetate buffer, pH 5.0) and vortex. 	
	 Hydrolyze for 3 hours at 60 °C then allow sample to cool for 5 minutes. 	
	 For GC analysis only, add 150 μL of 10 % Methoxyamine in water. Vortex and heat for 30 minutes at 60 °C. 	
	 Add 1000 μL of 100 mM Phosphate buffer (pH 6.0), verify that pH is between 5.5 and 6.5. 	
	5. Centrifuge for 5 minutes at 5000 rpm and discard pellet.	
6-MAM Benzodiazepines	To each 2 mL urine sample, add 1000 μ L of ß-glucuronidase solution (contains 5000 F units/mL Patella vulgata in 100 mM Acetate buffer, pH 5.0) and vortex. Hydrolyze for 3 hours at 60 °C. Let cool and add 1000 μ L of 100 mM Phosphate buffer (pH 6.0). Verify that pH is between 5.5 and 6.5. Centrifuge for 5 minutes at 5000 rpm and discard pellet.	
PCP Cocaine Metabolites Methadone Propoxyphene Barbiturates	acetate buffer (pH 5.0) then vortex. Verify that pH is between 4.0 and 6.0.	
Amphetamines	To each 2 mL urine sample, add 1000 μ L of 100 mM Phosphate buffer (pH. 6.0) and 1000 μ L of 0.35 M Sodium periodate. Vortex and incubate at room temperature for 25 minutes. Verify that the pH is between 5.5 and 6.5.	
Marijuana Metabolites	To each 2 mL urine sample, add 100 µL of 11.8 N Potassium hydroxide. Vortex then incubate at 60 °C for 20 minutes. Cool and add ~450 µL glacial acetic acid then vortex. Verify that the pH is between 4.0 and 6.0.	

STEP 3: Analyze Extracts

After extraction, analyze your results on a Zebron[™] ZB-Drug-1 GC column or a Kinetex[®] 1.7 μ m, 2.6 μ m or 5 μ m Biphenyl or C18 HPLC/UHPLC column.

STEP 2: Protocols

Strata-X-Drug B

	1	2	3
	Opiates, 6-MAM, PCP, Amphetamines, Methadone, Healthcare Opiates, and Propoxyphene*	Marijuana Metabolites	Cocaine Metabolites
Condition		Not Required	
Load	Pre-treated urine sample	Pre-treated urine sample	Pre-treated urine sample
Wash 1	2 mL of 100 mM Sodium acetate buffer (pH 5.0)	2 mL of 100 mM Sodium acetate buffer (pH 5.0)	2 mL of 0.1 N Hydrochloric acid
Wash 2	2 mL Methanol	2 mL of Acetonitrile:100 mM Sodium acetate buffer (pH 5.0) (30:70)	2 mL Methanol
Elute	10 minutes under full vacuum	15 minutes under full vacuum	10 minutes under full vacuum
	2 mL of Ethyl acetate: Isopropanol: Ammonium hydroxide (70:20:10)	2 mL of Ethyl acetate:Isopropanol (85:15) Methadone, Healthcare Op	2 mL of Ethyl acetate:Isopropanol: Ammonium hydroxide (70:20:10)

* Opiates, 6-MAM, PCP, Amphetamines, Methadone, Healthcare Opiates, and Propoxypher can be extracted simultaneously or separately using the same SPE methodology.

Methods are written for 60 mg/6 mL Strata-X-Drug B; however they can be scaled to accommodate smaller or larger sample sizes and sorbent masses.

Strata-X-Drug N

	1	2		
	Barbiturates	Benzodiazepines		
Condition	Not Required			
Load	Pre-treated urine sample	Pre-treated urine sample		
Wash 1	2 mL of 0.1 N Hydrochloric acid (HCl)	2 mL of Acetonitrile:Water (20:80)		
Wash 2	2x 2 mL of Methanol:			
Dry	10 minutes under full vacuum	10 minutes under full vacuum		
Elute	2 mL of Ethyl acetate:Isopropanol (85:15)	2 mL of Ethyl acetate:Isopropanol (85:15)		
Methods are written for 100 mg/6 mL Strata-X-Drug N; however they can be scaled to accomodate smaller or larger sample sizes and sorbent masses.				

For complete analytical methods, visit *www.phenomenex.com/stratax* to download Technical Notes or visit *www.phenomenex.com/application* to browse our applications.

Phenomenex products are available worldwide.

strata X-Drug

for choosing Strata®-X-Drug **Solid Phase Extraction (SPE) Products**

THANK YOU

Material Characteristics :stnedro2 X-start2 bns [®]start2 eldslisvA

General Methods

	500 500 Proprietary Proprietary N/M	۲0 ۲۰۵۵-۲۰۹۲ ۲۰۵۵-۲۰۹۲ ۲۰۵۵-۲۰۹۲ ۲۰۵۲-۲۰۹۲ ۲۰۵۲-۲۰۹۲ ۲۰۹۲-۲۰۹ ۲۰۹۲-۲۰۹۲ ۲۰۹۲	200 55 55 Proprietary W/A N/200 170 170 170 170 170	Screen-C GF Screen-C Screen-A MelA HAG Sodium Sulfate 1, PR (Enrishill)
[(p\ ^s m) sərA əsetnu2	(Å) size (Å)	Particle Size (µm)	
_				Wixed Mode / Specialty
	Proprietary Proprietary 520 520 520 520 520 520 520 520 520 520	Froprietary Froprietary 300 300 300 300 300 300 300 300 300 30	100 33 100 100 100 100 100 33 33 33 33 33 33 33 33 33 33 33 33 3	Stata-X Strata-X Strata-X-C Strata-X-C Strata-X-K Strata-X-C Strat
l	Surface Area (m²/g)	Pore Size (Å)	Particle Size (µm)	
				Polymeric
-	(g) ² m (ashace Area (m²/g) 000 000 000 000 000 000 000 0	Pore Size (Å) 70 70 70 70 70 70 70 70 70 70	(mu) estise eline9 28 28 28 28 28 28 28 28 28 28 28 28 28	Si-1 (Silics) Si-1 (Silics) SCX CV CV CI8-L CI8-D CI8-C CI8-C CI8-C
				Traditional

02 08

Proprietary

300

© 2016 Phenomenex, Inc. All rights reserved.

Trademarks

Ecuador

Denmark

Cyprus

Croatia

Costa Rica

Colombia

china

ceneda

Bulgaria

Herzegovina

Bosnia and

Brazil

Bolivia

muiglaa

Belarus

Barbados

Azerbaijan

BintsuA

Australia

Argentina

Sinepla

BINBdIA

ХЭПЭПОПАПА

Bangladesh

semedea edT

Chile

Czech Republic

Dominican Republic

Strata-X is patented by Phenomenex. U.S. Patent No. 7,1919,145

Macedonia

rithuania

repsnon

гатиа

uewny

Kenya

Jordan

ueder

ftaly

Israel

eibnl

pueleol

Hungary

Greece

France

bnsiniT

Estonia

Egypt

El Salvador

ifia

ຕິຍະເມສນາ

Guatemala

reland

lndonesia

Jamaica

Kazakhstan

блодшэхил

Kinetex and Strata are registered trademarks and Zebron is a trademark of Phenomenex.

Serbia

BissuA

Oatar

Poland

heru

Philippines

Baraguay

ended

emeneq

Pakistan

Vorway

Nigeria

Nicaragua

Μοτος

ooixeM

etieM

products are available worldwide

SuitineM

Malaysia

Montenegro

bnsisə<mark>Z</mark> wəN

The Netherlands

uemO

New Guinea

Romania

Saudi Arabia

Puerto Rico Portugal

Terms and Conditions Subject to Phenomenex Standard Terms & Conditions, which may be viewed at www.phenomenex.com/TermsAndConditions.

For more information or questions or technical support visit

500 120

hopping the manual terror to the manual terror to the manual terror terr

HdE

FL-PR (Florisil®)

General Methods Inside

Sleadquarters

Direct Sales

/seinsibisdu2

Vietnam

Λεηθηαλ

Ukraine

Turkey

eisiun

nswisT

uəpəms

Sri Lanka

South Korea

South Africa

Slovenia

Slovakia

Singapore

nisq2

DnslishT

Switzerland

United Kingdom

United Arab Emirates

ASU 💽

sleuzenela